If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8y^2+40y=48
We move all terms to the left:
8y^2+40y-(48)=0
a = 8; b = 40; c = -48;
Δ = b2-4ac
Δ = 402-4·8·(-48)
Δ = 3136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3136}=56$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-56}{2*8}=\frac{-96}{16} =-6 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+56}{2*8}=\frac{16}{16} =1 $
| (1/5)(4z-10)=(4/5)z-2 | | |6r+1|=-5 | | 13a-7a+-2=10 | | 3(2x+8)=3x+15 | | 9(b+3)=45 | | 2a+1a=0 | | 10+1/2x=98 | | (1/5)*(4z-10)=(4/5)z-2 | | 64-12w=6w+1 | | j/2+14=18 | | -5(x+6)-10=10 | | 55+62x+1=180 | | (3x-12)(4x-8)=0 | | (6x+2)^+4=28 | | -10c+13c=-8 | | 9x-7=75 | | 2(3x-5)=9x-40 | | -28=7(x+7) | | 4.3x=21.5 | | 3x-7+4x+19=180 | | 3(4x-5)+8x=2x-9(2x+1) | | -17n-12n+-18=11 | | z–46=-1 | | -2s+15=53 | | 32X^2+13x+39=0 | | (3x+4)=9.5 | | 4(x-5)=3x=7 | | 66=-6p | | b/6+1/6=17 | | -17n−12n+-18=11 | | -6n+-7=59 | | 7x-x+5x=4x+28 |